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J .  P H Y S .  A ( P R O C .  P H Y S .  SOC.) ,  1 9 6 8 ,  SER.  2 ,  V O L .  1 .  P R I N T E D  I N  G R E A T  B R I T A I N  

The graphical analysis of a Lorentzian function and a 
differentiated Lorentzian function 

W. GOUGH 
Viriamu Jones Laboratory, University College, Cardiff 
MS. received 9th h‘ooember 1967, in revisedform 16th July 1968 

Abstract. A simple graphical method is proposed for measuring the width of a 
Lorentzian curve when the base line is uncertain, and is compared with other possible 
methods. A similar method for measuring the width of a differentiated Lorentzian 
curve is also given. 

1. Introduction 
It is a common problem in experimental physics to fit data involving two variables to a 

theoretical curve containing two unknown parameters, and thence to determine these 
parameters for the curve of ‘best fit’. 

I n  general it is most desirable to solve problems of this type using a computer. However, 
it is useful to have recourse to a simpler alternative method which could be used if a 
computer is not available, or if the time required to write a programme is not justified by 
the extra accuracy obtained. 

The possibility of devising an alternative method will depend on the equation of the 
theoretical curve. If it is of simple mathematical form it is often possible to manipulate 
its equation so as to allow a ‘linear plot’ of the data points. 

Methods of doing this for a Lorentzian curve, and a differentiated Lorentzian curve, 
will be discussed. 

2. Analysis of a Lorentzian function 
2.1. Thomsen’s method 

(see figure 1) given by 
Thomsen (1966) gives a method of determining the centre of a Lorentzian function 

The nomenclature is slightly different from Thomsen’s. (a,  A)  are the coordinates of the 
peak, and 2x is the width at half the maximum. 

Figure 1. Lorentzian function. 
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In  Thomsen’s method, the quantity 

is calculated, where y o  is the value ofy at the arbitrarily chosen origin of x. (It is convenient, 
but not essential, that this origin should be near the centre of the curve.) There is a linear 
relationship between U and x given by 

x- 2a 
x1,22 + a2’ 

U =  

A plot of U against x will therefore give a straight line from which can be determined 
the value of a and hence the exact x coordinate of the peak. 

Although Thomsen’s method was devised primarily to determine the x coordinate of 
the peak, it has two by-products: (i) the value of x1,2 from the slope and a ,  and (ii) the 
accuracy with which the experimental points can be represented by a Lorentzian function. 

2.2. EfJect of uncertainty in the base line 
It often happens that the data are known to fit a Lorentzian function but the base line 

(i.e. the position of the x axis) is unknown. Unless the data cover a range of several line- 
widths on either side of the peak, there may be an appreciable error in estimating the base 
line, which will cause non-linearity in the relationship between U and x. 

-1 

# 

-5 -4 -3 -2 

0.05. 

-0.1 1-0.05 

Figure 2. Plot of U against x with uncertain base line, x = 8. 

where 7 is the error in the position of the base line, expressed as a fraction of A, we find 
that 

The  effect of a non-zero 7 is shown in figure 2, in which uxl12 is plotted against x / x l 1 2  
for a typical value of a ,  &xli2. It can be shown that a very similar result is found for other 
values of a in the range - - & x ~ , ~  < a < &xli2. 
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Although the line is curved, the intercept at U = 0 and hence the x coordinate of the 
peak can still be determined with a reasonably good accuracy if 171 < -0.1. However, 
it is now impossible to measure x l j z  accurately from the slope, and to determine how well 
the data fit a Lorentzian function. These are best determined by a different method. 
2.3. Measurement of x1,2 with an uncertain base line 

usually be found with considerable accuracy. Hence we are led to define a quantity 
It is convenient to measure y downwards from the peak, since its y coordinate can 

A(x -  a)2 
x1,22 + (x- a)2' = Ypeak-Y = (3) 

(We note that ypeak is the true height of the peak A + TA, not the value of y at x = 0.) 
If a = 0, A/Y = l+xlj22/x2. Two methods suggest themselves: (i) to plot 1jY 

against 1/x2 or (ii) to plot x 2 / Y  against 2. Either of these will give a straight line from 
which x1,2 can be determined, but a little thought will show that method (ii) is preferable. 
The reason is that if the probable experimental error A Y  is approximately the same for all 
points, the quantity A(x2/Y) varies much less than A(l /Y) ,  so that when the graph is 
drawn a much smaller error is introduced if equal weights are given to each point. Even 
so, there is still such a variation in A(x "y )  that it is advisable to weight each point appro- 
priately. 

The intercept on the x2 axis is -x I j z2 .  
2.4. ESfect of uncertainty in the origin of x in this method 

I t  is not possible in practice to judge the centre of the Lorentzian function with perfect 
accuracy, so that in equation (3) a # 0. One way of proceeding is to find the centre as 
outlined in 5 2.1, and then to plot x 2 ]  Y against x2. There is a simpler method, however, 
based on the fact that the centre can be judged by eye to within about 1'6 of x ~ , ~ ,  so long 
as there are enough experimental points, and their accuracy is reasonably good. 

One consequence of having a # 0 is that Y ( x )  is not quite equal to Y( -2). A method 

would be inferred from the intercept on the x axis as before. The error would be small, 
as we shall show. 

which suggests itself is to plot x2 /Ym against x2, where Ym = +{Y(x)+ Y( - 2 ) ) .  x1,2 2 

It can be shown that 
Ax2  a2x1!22(3~2-  a2-x1,22) 

Ym 
-- - x2 + X 1 , 2 2  + 

( ~ 2  - ,212 + xli22(x2 + a")' 

It is convenient to define dimensionless parameters 

and we find 

The error term (the last term on the right-hand side) is tabulated below, for sc = 0.1 
and 0.3. 

Table 1. Error term as a function of e 
E 0.1 0.2 0.3 0.5 1 1 . 5  2 3 5 

CC = 0.1 -0,490 -0.175 -0.070 -0.008 0.010 0.008 0.006 0.003 0.001 
= 0.3 -0.897 -0,659 -0,410 -0.084 0.090 0.073 0.051 0.026 0.010 

The  error introduced in the intercept due to this error term will be very small so long 
as: (i) the centre of the line is judged to within 7% of x1,2 and (ii) points within about + 
of x1,2 of the peak ( f  < 0.5) are given less weight. 
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It can be shown that the above method gives a smaller error term than would be 
obtained by plotting either 

?(- 1 1 X 2  

2 Y ( . ) + q q i  Or {Y(x )Y( -x ) } -*  

2.5. EfJect of a sloping background 

approximately constant, so that the curve is represented by 
It may happen that the background has a small slope which can be taken as being 

/3 is a dimensionless constant, being the increase in the background level expressed as a 
fraction of A, owing to an increase of x1,2 in the value of x. 

It may appear at first sight that the method of plottingx ’/ Ym against x2 would entirely 
eliminate the error due to a constant slope. This is not quite true, the reason being that 
there will now be an error in estimating they coordinate of the peak because of the displace- 
ment of the position of the true peak by the sloping background. 

If the experimental curve extends over a sufficient range of x ,  it would be possible to 
estimate the slope of the background, and hence to determine the true position of the peak 
and its y coordinate. The  error would then be eliminated. If this cannot be done, a small 
error will arise, so that 

--$ = 1 +[2+E. 
Y m  

A 

The error term E is tabulated below for 5: = 0.1 and P = rf: 0.05 (cf. table 1, for which 

Table 2. Error term E as a function of 5, a = 0.1 

p = 0) .  

E 0.1 0.2 0.5 0.6 1 2 3 

p = 0.05 -0.608 -0,269 -0.042 -0.027 -0,012 -0.029 -0.059 
p = -0.05 -0.337 -0’084 0.019 0.024 0’028 0.033 0.052 

It is seen that for these values of 5: and p the errors are small so long as the points within 
the range I[/ < 0.6 are given less weight. 

2.6. EfSect of a small number of data points 

to estimate its height with accuracy. If this is not so, 
The method of 5 2.4 presupposes that there are enough data near the peak to be able 

A ( x -  a)2 
Y =  -+CA 

x1,22 + ( x -  a)’ 
where ( is the error in estimating the height of the peak, expressed as a fraction of A. In  
this case, 

A 5:(2t-a)-5(1 + t2 ) {1  + ( f - 5 : ) 2 }  - p  = 1+p+  
Y (5-5:)”55(1 +(5-5:)2} 

If the peak can be determined to within 1% of A (C < 0.01) the error in measuring 
x I i2  is only a few per cent, so long as l5:l < 0.1, and the points near the peak (t2 < 1) 
are given little or no weight. One plot is made of ( x 2 /  Y )  against x2 for each wing, and the 
average of the two intercepts used to determine x ~ , ~ .  If the peak cannot be determined 
to within 1 yo of A ,  it is advisable to use a least-squares method to evaluate accurately. 
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3. Analysis of a differentiated Lorentzian function 
It is sometimes necessary to analyse a curve which is a differentiated Lorentzian function 

(see figure 3) given by 

For example, such a curve might be the result of a ‘level crossing’ experiment (Franken 
1961) in which the external magnetic field is modulated and the resulting modulated signal 
detected by a phase sensitive detector (for example, Gough and Series 1965). 

I 

Figure 3. Differentiated Lorentzian function. 

3.1, The exact position of the origin 
Sometimes the main object of the analysis is to determine the position of the origin as 

accurately as possible using all the available information. In  this case, we usually have no 
knowledge of the origin of x or y .  Because of the complex form of equation ( 5 )  no simple 
graphical method readily suggests itself. 

One simple way of solving the problem, however, is to plot the two halves of the curve 
on separate pieces of translucent graph paper, place one over the other, and match them 
as well as possible. It is a simple matter to deduce the origin from the position of best fit. 

In  passing it could be mentioned that this method is possible for any symmetrical or 
antisymmetrical curve, although no use is made of any knowledge of the equation of the 
curve. 

3.2. The width of the curve 
It is sometimes necessary to measure x1,2 of a differentiated Lorentzian curve. 
One method, suggested by Series, was used in an experiment to determine the mean 

lifetime of the 6 ’D3,2 state of thallium I by Gough and Series (1965). The method, which 
is very similar to that described in $2.3, is to plot ( ~ / y ) ” ~  against x2, giving a straight line 
with an intercept of - x1,22 on thex axis. 

It can be shown that this method is better than plotting (x3y) - l j2  against xF2. As in 
5 2.3, it is advisable to weight each point appropriately. 

Since y is antisymmetric and has a large gradient at the origin, there is no difficulty in 
locating the origin of x to within about 0 . 0 5 ~ ~ ~ ~ .  

It is possible to correct for a small error which might arise in estimating the origin of 
x by a device similar to that of 5 2.4, based on the fact that y(x)  is slightly different from 
- Y ( - X ) *  
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(x/ym)l12 is plotted against x2, where y m  = ${y(x)  -y( - x)). 
Thus, if the origin of the curve has coordinates (a ,  b) ,  the measured values of x and y 

obey the equation 
Z(X - a)Ax,,,2 

(x1,22 + (X - a)">" 

(xw2 + (. + 42){x1,22 + (. -a),} 

Y - b  = 

whence we find that 

(2A)I (;I1 = ( x ~ , ~ '  + ZX,,,>"X>" - ZX, + x4 + Za2x2 - 3a4)1 '2 '  

Putting this equation equal to X > " + X ~ , ~ > " + A ,  where h is a small correction term, we 
find that 

(6) 
n 

xu2 2 

where x = a/xli2 and f = x/xliz as before. 
Any error in estimating the y coordinate of the origin is eliminated by this method. 

I t  should be possible to determine its x coordinate visually to within 0 . 0 5 ~ ~ ~ ~ .  If x = 0.05 
in equation (6), this gives /A/.xli2>"1 to be less than 0.0076. 

In  contrast to the Lorentzian function, it is not a simple matter to correct for a sloping 
background because the curve is antisymmetrical. 
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